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Introduction

Some polynuclear complexes show the property that its
magnetization relaxes slowly at low temperature and they
have been named single-molecule magnets (SMM).[1] Due to
this appealing feature, such systems have been proposed as
candidates for the storage of information at the molecular
level. The first single-molecule magnet reported was the
[Mn12O12(CH3COO)16(H2O)4] complex, usually known as
Mn12.

[2] The number of single-molecule magnets is still grow-
ing, but among them the more widely studied complex be-
sides Mn12 is the Fe8 system,[3] [Fe8O8(OH)12-
(tacn)6]Br8·9H2O (tacn=1,4,7-triazacyclononane).[4] In the
absence of magnetic field, these two complexes have S=10
ground states, and cooling the sample slowly at low temper-
atures leaves the Ms=� 10 levels as the only populated
ones. In the presence of a magnetic field, only one of them
will be populated. When the magnetic field is switched off,
in order to attain thermodynamic equilibrium, the system
must either climb the ladder of Ms states or undergo a tran-

sition through quantum tunneling between excited states
with smaller Ms values. The crucial parameter that controls
both processes, the thermal jump of the barrier and the ther-
mally assisted quantum tunneling, is the height of the barri-
er. The energy barrier is equal to D·S2, where D is the zero-
field splitting parameter.[1] Thus, in order to obtain a single-
molecule magnet behavior at high temperatures, the re-
quirements are a large spin ground state and a large nega-
tive anisotropy constant D.
The spin Hamiltonian for a general polynuclear complex

can be expressed as:

Ĥ ¼ �
X

i>j

JijŜiŜjþDðŜ 2
z�

1
3

Ŝ 2Þ þ EðŜ 2
x � Ŝ 2
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where Ŝi and Ŝj are the spin operators of the paramagnetic
centers i and j and Ŝ and Ŝz are the total spin operator of
the molecule and its axial component, respectively.[5] The Jij
values are the exchange coupling constants for the different
pairwise interactions between the paramagnetic centers of
the molecule, while D and E are the axial and rhombic com-
ponents of the anisotropy, respectively. The spin-orbit cou-
pling effects must be taken into account for the calculation
of the zero field splitting parameters D and E.[6] In this
work, we will focus only on the calculations of exchange
coupling constants that determine the S value of the ground
state of the system. The J values can be obtained directly
due to the non-inclusion of the spin-orbit coupling responsi-
ble of the zero-field splitting terms. Such contributions have
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been calculated by Pederson et al. by using DFT methods
with a perturbative approach to include the spin-orbit cou-
pling, obtaining excellent results for SMM systems. A more
detailed description of the procedure to obtain the exchange
coupling constants can be found elsewhere.[7] In addition, we
will perform a study of the accuracy of the different approx-
imate Monte Carlo methods to calculate the magnetic sus-
ceptibility from the exchange coupling constants by compar-
ison with the exact diagonalization method that is still feasi-
ble for the Fe8 complex. The interest of such approaches is
that they can be applied to obtain the magnetic susceptibili-
ty for larger systems for which an exact diagonalization
cannot be carried out.

Computational Details

Electronic structure calculations have been performed with Gaussian98[8]

and SIESTA (Spanish Initiative for Electronic Simulations with Thou-
sands of Atoms)[9] codes. The calculations with the Gaussian98 code were
performed with the hybrid B3LYP
functional[10] and a triple-z all electron
basis set for the iron atoms and a
double-z basis set for the other ele-
ments.[11,12] In the case of the SIESTA
code,[13–15] the generalized-gradient ap-
proximation (GGA) functional pro-
posed by Perdew, Burke and Erzern-
hof[16] was employed and pseudopoten-
tials were generated according to the
procedure of Trouiller and Martins.[17]

A more detailed description of the
pseudopotentials employed can be
found in the literature.[18] We have
used a numerical basis set of triple-z
quality with polarization functions for the iron atoms and a double-z one
with polarization functions for the main group elements.[11,12] The values
of 50 meV for the energy shift and 250 Ry for mesh cutoff, provide a
good compromise between accuracy and computer time to estimate the
exchange coupling constants according to a previous study.[19] The use of
the numerical code results in a considerable reduction of the computer
time. Nevertheless, it is a well-known fact that GGA functionals, that are
those available in the SIESTA code, overestimate the stability of low
spin states in comparison with the more accurate results obtained with
hybrid functionals.[20,21] However, the use of pseudopotentials partially
compensates these problems, and the sign and the relative strength of the
interactions are well reproduced using GGA functionals.[19]

Results and Discussion

Exchange coupling constants : The calculated exchange cou-
pling constants are presented in Table 1. We have employed
a set of four equations obtained as differences of the ener-
gies of five spin distributions (see Supporting Information,
sd1, sd2, sd3, sd4 and sd5). In order to check the stability of
the calculated J values with the choice of the spin distribu-
tions, we have calculated two additional spin distributions
using the B3LYP functional (see Supporting Information,
sd6 and sd7) and performing a least-squares fitting to the six
equations system. The new values corresponding to the
B3LYP functional are almost identical to those obtained
previously, confirming their small dependence with the
choice of the spin distributions. However, in the case of the
PBE functional the changes are slightly larger probably due
to the bigger variations of the atomic local spin values (see
Table S1, Supporting Information) that would result in a
larger deviation of the phenomenological Heisenberg Ham-
iltonian, in which such value is assumed as a constant.

The large number of states (68=1.6·106 states) present in
the Fe8 complex makes it impossible to perform a fitting of
the measured magnetic susceptibility to obtain the four dif-
ferent J values (see Figure 1) as usually done for smaller
molecules. Thus, some authors have proposed sets of J
values that approximately reproduce the experimental mag-
netic susceptibility curve using as reference the J values ob-
tained for similar exchange pathways in dinuclear com-
plexes.[22–24] Comparison of such values with the calculated
ones allows us to extract some conclusions: i) the J15, J37 and
J13 constants correspond to antiferromagnetic coupling in all
cases, J15 and J13 being the weakest and strongest interac-
tions, respectively; ii) the sign and the relative strength of
such calculated interactions using either functionals agree
well with those proposed earlier to reproduce the experi-
mental magnetic susceptibility but the calculated values are
smaller; and iii) the calculated J12 values indicates a weak
ferromagnetic interaction between the two central iron
atoms, in contrast with antiferromagnetic values previously
proposed for such interaction.
Hendrickson et al. and Overgaard et al. have shown for

Fe4 butterfly complexes that the influence of the J12 constant
on the shape of the magnetic susceptibility curve is very
small, due to its weakness and the presence of four stronger
J13 couplings.

[25,26] As a result, an accurate estimation of such

Abstract in Spanish: Se han empleado m�todos te�ricos ba-
sados en la teor�a del funcional de la densidad para analizar
las interacciones de intercambio del complejo Fe8 con propie-
dades de im"n unimolecular. Las cuatro constantes de inter-
cambio, calculadas usando un funcional h�brido proporcio-
nan una descripci�n precisa de la curva de susceptibilidad
magn�tica experimental y de las energ�as de excitaci�n. Este
complejo ha sido tambi�n empleado para comprobar la pre-
cisi�n de los m�todos de Monte Carlo cl"sico y cu"ntico en
el c"lculo de propiedades macrosc�picas, por comparaci�n
con los resultados obtenidos mediante la diagonalizaci�n
exacta de la matriz Hamiltoniana.

Table 1. Description of the bridging ligands, average Fe···Fe distances, bond angles and calculated exchange
coupling constants J [cm�1] for the Fe8 complex.

[a]

Bridging ligands d(Fe···Fe) [Q] Fe-O-Fe [8] JPBE JB3LYP Jprop

J12 (O2�)2 2.938 96.9 +28.9 (+26.4) +5.1 (+4.7) �25, �20, �25
J15 (OH�)2 3.448 99.9 �9.2 (�11.3) �10.4 (�10.7) �18, �15, �15
J37 OH� 3.534 126.5 �14.4 (�13.1) �34.1 (�34.1) �41, �35, �40
J13 O2� 3.046 128.8 �55.8 (�56.3) �66.5 (�66.4) �120, �120, �140

[a] The results with the PBE functional and numerical functions where obtained with the SIESTA code whilst
those with the B3LYP hybrid functional with the Gaussian98 code (values in parenthesis are those obtained
with a least-squares fitting of six equations). Values proposed to reproduce the experimental magnetic suscept-
ibility curve are also indicated (Jprop).

[22–24]
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interaction from the magnetic susceptibility is very difficult.
Recently, ferromagnetic couplings have been obtained via
interactions through a double oxo-bridge in Fe6 com-
plexes.[27,28] From all these data, we can conclude that a rela-
tively weak ferromagnetic or antiferromagnetic coupling
should be expected for such kind of interactions depending
on the geometry of the framework. The relative strength of
the exchange interactions follows a trend previously noticed
from theoretical and experimental data, that the single
bridging ligand pathways show the strongest antiferromag-
netic coupling (see Table 1), stronger for the oxo than for
the hydroxo bridge.[22,23]

Magnetic susceptibility and Monte Carlo simulations : In
order to compare the calculated exchange coupling con-
stants directly with the experimental data, we have under-
taken the calculation of the magnetic susceptibility from cal-
culated J values by exact diagonalization of the Hamiltonian
matrix using the MAGPACK code.[29] The calculated curves
are represented together with the experimental one in
Figure 2. The “experimental” curve corresponds to that ob-
tained using the proposed J values,[23] that fit correctly the
experimental points and does not include the zero-field
splitting contributions. Clearly, the curve generated with the
J values obtained with the B3LYP functional shows an ex-
cellent agreement with the experimental values whilst the
susceptibility curve obtained with the J values from the PBE
functional and numerical functions are considerably differ-
ent. It is worth noting how sensitive the shape of the sus-
ceptibility curve is relative to the J values. Thus, relatively
similar sets of theoretical values, such as those obtained the-
oretically (see Table 1), give completely different curves.
Likewise, the experimental value[30] of the excitation energy
between the ground state and the first excited S=9 state
(24.5 cm�1) is well reproduced by the eigenvalues obtained
through exact diagonalization using the B3LYP J values
(30.5 cm�1), while a much smaller excitation energy is ob-
tained with the PBE functional (4.5 cm�1). Nevertheless,

both theoretical approaches reproduce correctly the spin
values of the ground and the first excited state determined
from inelastic neutron scattering.
The use of the exact diagonalization procedure to obtain

magnetic susceptibilities is considerably limited by the size

of the systems. The Fe8 complex is close to the limit of ap-
plicability of such an approach with state-of-the-art compu-
tational resources. Thus, it is an excellent benchmark to
check the accuracy of approximate methods that could be
employed with larger systems for which the exact diagonali-
zation cannot be applied. Some of the approximate methods
most commonly employed to obtain the magnetic suscepti-
bility are those based on Monte Carlo simulations. We can
classify them in two groups: The first one constituted by the
methods commonly known as classical Monte Carlo based
on a Metropolis algorithm that can be applied successfully
only to systems with large local spin values, for instance S =
5=2 in Fe

III or MnII complexes.[31,32] In such a method, the
energy and probability of the spin flip is obtained as the in-
teraction of two non-quantized spins. A sampling of states is
thus generated to calculate the average magnetization M by
using Equation (2), that preferentially includes the configu-
rations that bring important contributions at temperature T.

hMi ¼

Pn

i¼1
Mie

�Ei=kt

Pn

i¼1
e�Ei=kt

ð2Þ

Figure 1. Representation of the molecular structure of the [Fe8O8(OH)12-
(tacn)6]

8+ complex (tacn=1,4,7-triazacyclononane). The carbon, oxygen,
iron, nitrogen, and hydrogen atoms are represented by spheres of differ-
ent shades of gray, from dark to bright, respectively. The labels of the
iron atom are employed to describe the four different exchange coupling
constants (J12, J15, J37 and J13). There is one J12 coupling constant between
the two central iron atoms and four for each of the other three types of
interaction.

Figure 2. Calculated magnetic susceptibility curves for the Fe8 complex
obtained by exact diagonalization compared with the experimental data.
The bold dotted line has been calculated with the B3LYP/Gaussian (^)
coupling constants and the dotted line corresponds to the PBE values
(*) obtained with the SIESTA code. The experimental values (*) corre-
spond to one of the proposed sets of J values that fit correctly the experi-
mental points and does not include the zero-field splitting contributions
to allow for comparison with the theoretical results.[23]
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The magnetic susceptibility, cm, can be obtained from the
fluctuations in the magnetization by employing Equation (3),
where hMi and hM 2i are the mean values of M and M 2.

c ¼ ðhM 2i � hMi2Þ=kT ð3Þ

The number of steps in the Monte Carlo simulation for each
temperature is 5·107/T (T in K). Thus, we include more steps
in the sampling at low temperature because it is more diffi-
cult to describe correctly the magnetic behavior at such tem-
peratures. A 10% of the steps are employed for the ther-
malization of the system.

The second group of Monte Carlo methods are those ex-
tensions that allow to treat quantum spin systems including
local spins of S = 1=2, usually called quantum Monte Carlo
methods.[33] Among them we have employed the Decoupled
Cell Monte Carlo Method (DCM) proposed by Homma
et al.[34] and a modification of such approach proposed by
Miyazawa et al.[35] that improves the results at low tempera-
ture (mDCM). The basic idea of such methods is to perform
the exact diagonalization only for a subsystem, the decou-
pled cell. The conditional probability of a spin placed in the
center of the subsystem being up or down is obtained from
these exact diagonalization procedures, then it is possible to
construct a Markov chain of a quantum system by using the
Metropolis algorithm as in the Classical Monte Carlo ap-
proach. Due to the incompleteness of these subsystems,
there are truncated interactions between some paramagnetic
centers, especially in the simplest subsystem that is formed
by a central spin and its first neighbors. For such centers, the
mDCM method includes also in the calculation of the prob-
ability of the spin flip, the results obtained using other sub-
systems built up with different central spins and where the
spin candidate to flip is included. In general, the quality of
such quantum methods depends on the size of the subsystem
employed in the calculation of the probabilities, being hypo-
thetically exact when the whole system is considered. It is
known that the proper shape and size of a cell depend on
the type of lattice,[36] being especially difficult for the
mDCM method when the second-neighbor interactions are
considered, which is our case.
The results of the three Monte Carlo approaches de-

scribed above for the calculation of magnetic susceptibility
of the Fe8 complex by using the exchange coupling constants
obtained with the B3LYP method are shown in Figure 3. As
expected, the classical Monte Carlo method provides rea-
sonable values only down to 140 K, while the limit is extend-
ed to 80 K with quantum Monte Carlo methods using a
DCM approach with a decoupled cell including only first
neighbors (black triangles in Figure 3). However, the DCM
quantum method fails at low temperature due to the small
size of the cell considered for the outermost iron atoms (see
Figure 1), where only subsystems of three Fe centers have
been considered. Such results can be considerably improved
by extending the decoupled cell for such external center to
five centers (black squares in Figure 3). Finally, it is worth

noting that the mDCM method[37] correctly describes the
shape of the susceptibility curve at low temperature, at dif-
ference with other Monte Carlo methods. However, at high
temperature it provides results closer to the classical Monte
Carlo method than to the DCM method or the exact diago-
nalization.

Spin density distribution : Finally, we have analyzed the dis-
tribution of the spin density in the Fe8 complex (Figure 4,
detailed atomic spin populations are provided as Supporting
Information). The spin density is mostly localized at the
FeIII cations, with local magnetic moments between 4.10 and
4.17 calculated with the natural bond orbital method[38] (or
between 4.18 and 4.25 using a Mulliken population analysis).
Significant spin delocalization towards donor atoms is ob-
served, mostly associated to the s antibonding eg elec-
trons.[39] The oxygen atoms of the central bridges have posi-
tive spin densities because they are each surrounded by two
FeIII cations with positive spin density and only one with
negative spin. Pontillon et al. , using polarized neutron dif-
fraction, have obtained a non-symmetric spin distribution
for the Fe8 complex with small local moments for some Fe

III

cations,[40] between 1.94 and 4.91 e� . They argue that the
reason for such values is the existence of configuration inter-
action in the ground state. However, this fact cannot explain
the asymmetry of the magnetic moments of for example, the
Fe3 and Fe4 cations (see Figure 1 for labeling scheme), with
calculated values of 1.94 and 4.91 e� , respectively.
In conclusion, despite the computational difficulties asso-

ciated to the small energy differences involved in the ex-
change coupling interactions, theoretical methods based on
density functional theory provide excellent results when
compared with the available experimental data. The combi-

Figure 3. Magnetic susceptibility curves for the Fe8 complex obtained by
exact diagonalization with the B3LYP J values (c) and also shown are
the results for Classical Monte Carlo (+) and quantum Monte Carlo
methods (~) and DCM approach with two different cells (&), mDCM
method (&).
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nation of density functional methods with Monte Carlo sim-
ulations opens up a wider range of applications to larger sys-
tems, allowing for a more detailed knowledge of the differ-
ent exchange interactions involved than is possible from the
experimental data. This knowledge will facilitate a better
understanding of the correlation between magnetic proper-
ties and geometric structure in this kind of complex poly-
nuclear systems that will ultimately permit a rationalization
of the properties despite the traditionally serendipitous pro-
cess used to obtain new single-molecule magnets.
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Figure 4. Representation of the spin density map calculated at the
B3LYP level for the single-determinant ground state of the Fe8 complex
(clear and dark regions indicate positive and negative spin populations,
respectively). The isodensity surface corresponds to a value of 0.01 e�/
bohr3.
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